MENU

E-pismo dla elektryków i elektroników
AUTOMATYKA, ELEKTRYKA, ZAKŁÓCENIA

Vol. 7, Nr 4(26) 2016

Publ. 31.12.2016

Pięciofazowy silnik indukcyjny - budowa i właściwości napędowe

Five-Phase Squirrel-Cage Motor. Construction and Drive Properties

dr hab. inż. Jarosław GUZIŃSKI, dr inż. Grzegorz KOSTRO, mgr inż. Patryk STRANKOWSKI, dr inż. Marcin MORAWIEC, dr Atif IQBAL

s. 124-136 DOI: 10.17274/AEZ.2016.26.07

Abstract

This paper presents the simulation and experimental realization of a five-phase squirrel-cage induction motor prototype. The new machine has been designed to operate in a drive system with third harmonic rotor flux injection in order to improve the motor torque utilization. The motor structure, the mathematical model as well as the laboratory prototype and speed-torque characteristics have been described. Furthermore, the start-up possibility in the case of one or two stator winding faults is showed as well. The idea of a closed loop speed control with increased load torque is presented.

Streszczenie

W pracy przedstawiono pięciofazowy silnik indukcyjny klatkowy, który zaprojektowano tak, aby wykorzystać wyższe harmoniczne momentu elektromagnetycznego. Zaprezentowano konstrukcję maszyny, model matematyczny oraz zbudowany prototyp laboratoryjny jego charakterystyki mechaniczne oraz przebiegi w stanach przejściowych. Wskazano na możliwość rozruchu i pracy maszyny przy uszkodzeniu jednej lub dwóch faz. Przedstawiono koncepcję sterowania ze zwiększeniem momentu napędowego.

Keywords

five-phase induction motor, electrical drive, mathematical model, speed control

Słowa kluczowe

silnik indukcyjny pięciofazowy, napęd elektryczny, model matematyczny, sterowanie prędkością

Rys. / Fig.

Bibliografia / Bilbiography

[1] E. Levi, “Multiphase Electric Machines for Variable-Speed Applications”, IEEE Trans. Ind. Electron., 55 (2008), n. 5, 1893-1909.
[2] E. Levi, R. Bojoi, F. Profumo, H. a. Toliyat, and S. Williamson, “Multiphase induction motor drives – a technology status review”, IET Electr. Power Appl., vol. 1, no. 4, p. 489, 2007.
[3] E. Levi, "Advances in Converter Control and Innovative Exploitation of Additional Degrees of Freedom for Multiphase Machines", in IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 433-448, Jan. 2016.
[4] E. Levi, N. Bodo, O. Dordevic and M. Jones, "Recent advances in power electronic converter control for multiphase drive systems", 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Paris, 2013, pp. 158-167.
[5] P. Drozdowski, G.Kostro, M. Ronkowski, „Wielofazowe silniki indukcyjne klatkowe – zalety i wady”, AUTOMATYKA, POMIARY, ZAKLOCENIA, www.epismo-aez.pl , DOI: 10.17274/AEZ.2014.18.04, pp. 42-56, Vol. 5, Nr 4 (18) 2014.
[6] Z. Krzeminski, ”Sensorless control of polyphase induction machines, in Kabzinski J., Advanced control of electrical drives and power electronics converters”, Springer, 2017.
[7] H. Abu-Rub, A. Iqbal, J. Guzinski (Eds), “High Performance Control of AC Drives With Matlab/Simulink Models”, John Wiley&Sons Ltd. 2012.
[8] A. S. Abdel-Khalik, M.I. Masoud and B.W. Williams, “Improved Flux Pattern With Third Harmonic Injection for Multiphase Induction Machines”, IEEE Trans. Power Electron., 27 (2012), n. 3, 1563-1578.
[9] M. Mengoni, L. Zarri, A. Tani, L. Parsa, G. Serra, D. Casadei, “High-Torque-Density Control of Multiphase Induction Motor Drives Operating Over a Wide Speed Range”, IEEE Trans. Ind. Electron., 62 (2015), n. 2, 814-825.
[10]H. Xu, H. A. Toliyat, and L.J. Petersen, “Rotor field oriented control of five-phase induction motor with the combined fundamental and third harmonic currents”, Proc. IEEE 16th Annu. Appl. Power Electron. Conf. Expo., Mar. 4–8, 2001, vol. 1, 392–398.
[11]L.A. Pereira, C.C. Scharlau, L.F.A. Pereira, and J. F. Haffner, “General model of a five-phase induction machine allowing for harmonics in the air gap field”, IEEE Trans. Energy Convers., 21 (2006), n. 4, 891–899.
[12]L.A. Pereira, C.C. Scharlau, L.F.A. Pereira, and J. F. Haffner, “Influence of Saturation on the Airgap Induction Waveform of Five-Phase Induction Machines”, IEEE Trans. Energy Conv., 27 (2012), n. 1, 29 – 41.
[13]L. Zheng , J.E. Fletcher , B.W. Williams and X. He, “Dual-plane vector control of a five-phase induction machine for an improved flux pattern”, IEEE Trans. Ind. Electron., 55 (2008), n. 5, 1996 -2005.
[14]M. Adamowicz, P. Strankowski, M. Morawiec, J. Guziński, Z. Krzemiński, "Sterowanie multiskalarne pięciofazowym silnikiem indukcyjnym", XII Konferencja Naukowa Sterowanie w Energoelektronice i Napędzie Elektrycznym, SENE 2015, 18-20 Listopad 2015, Łódź.
[15]M. Adamowicz, P. Strankowski, M. Morawiec, J. Guziński, Z. Krzemiński, "Sterowanie multiskalarne pięciofazową maszyną indukcyjną", Przegląd Elektrotechniczny, nr. 5, 2016, pp. 108-115.
[16]M. Adamowicz, J. Guziński, Z. Krzemiński, "Nonlinear control of five phase induction motor with synchronized third harmonic flux injection", First Workshop on Smart Grid and Renewable Energy (SGRE2015), 22-23.03.2015, Doha, Katar.
[17]M. Imecs, A. Kelemen, “Comparison between multiphase servo drives using the polyphase space-phasor theory”, Proceeding of PCIM’95, Nurnberg, 1995.
[18]Ł. Kubik, M. Macherzyński, T. Czaja, "Specjalistyczne wycinanie laserowe w technologii fiber”, Zeszyty Problemowe – Maszyny Elektryczne Nr 1/2013 (98) 73, BOBRME KOMEL, Katowice.
[19]A. Lewicki, J. Guziński, P. Strankowski, „Wektorowa modulacja szerokości impulsów w pięciofazowych falownikach napięcia”, Mat. XII Konf. Nauk. SENE 2015, 18-20 Listopada 2015.
[20]A. Lewicki, P. Strankowski, J. Guziński, "Metoda wektorowej modulacji szerokości impulsów pięciofazowego falownika napięcia", Przegląd Elektrotechniczny, nr. 5, 2016, pp. 28-35.
[21]L.A. Pereira, S. Haffner, L.F.A. Pereira, R.A. Benvenuti, R.S. da Rosa, “Parameterized Model and Performance of Five-Phase Induction Machines including Losses and Saturation”, J Control Autom Electr Syst (2015) 26:255–271, DOI 10.1007/s40313-015-0169-3