MENU

E-journal for electrical and electronic engineers
AUTOMATYKA, ELEKTRYKA, ZAKLOCENIA

(AUTOMATICS, ELECTROTECHNICS, DISTURBANCES)

vol. 12, nr 1 (43) 2021

Publ. 31.03.2021

Control Process Modelling of Thermodynamic Systems Containing a Thermal Energy Storage Tank

Oktawia DOLNA, Robert MATYSKO, Weronika WISNIEWSKA

s. 44-62 DOI:

Abstract

The article content constitutes the answer to a growing interest of a heat-flow processes automatisation applied into detached houses heating sector. The paper contains a brief description of a usage of the PID and fuzzy controllers. The methods of the controller’s setting selections (e.g. Ziegler-Nichols method), which are alternative to the classical ones, have been also presented within the paper. The optimization of the controllers’ settings for the executive systems of a thermodynamic cycle is also available in the paper. It was carried out based on the minimum heat flux increase time in the condenser unit of a heat storage tank. For this purpose the Simplex NelderaMeada algorithm was used. In the article, the results of the changeable work of the thermal energy storage tank have also been presented. The analysis was carried out in the Matlab Simulink environment

Keywords

control proces modeling, thermodynamic systems, energy storage tank

Fig.

Bilbiography

[1] Joachim Alberts, Rainer Dommel, Henry Montaldo-Ventsam, Harald Nedo, Eugen Übelacker, Josef Wagner: „Systemy centralnego ogrzewania i wentylacji Poradnik dla projektantów i instalatorów”, Wydawnictwo Naukowo-Techniczne, Warszawa, 2007r
[2] Shibazaki Naoki, Sakuma Toshiyuki, Watanabe Naoki, Kurita Satoshi, Storage Water Heater, EP3147583 (A1)
[3] Li Wenzhe, Pega, Hrnjak: „Experimentally validated model of heat pump water heater with a water tank in heating-up transients”,
International Journal of Refrigeration, Volume 88, April 2018, Pages 420-431
[4] M. Tammaro, A. W. Mauro, C. Montagud, J. M. Corberán, R. Mastrullo: „Hot sanitary water production with CO
2 heat pumps: Effect of control strategy on system performance and stratification inside the storage tank”, Applied Thermal Engineering, Volume 101, 25 May 2016, Pages 730-740
[5] Pin Wu, Zhichao Wang, Xiaofeng Li, Zhaowei Xu, Yingxia Yang, Qiang Yang: „Energy-saving analysis of air source heat pump integrated with a water storage tank for heating applications”,
Building and Environment, Volume 180, August 2020, 107029
[6] Lana Kenjo, Christian Inard, Dominique Caccavelli: „Experimental and numerical study of thermal stratification in a mantle tank of a solar domestic hot water system”,
Applied Thermal Engineering, Volume 27, Issues 11–12, August 2007, Pages 1986-1995
[7] Mouchira Labidi, Julien Eynard, Olivier Faugeroux, Stéphane Grieu: „A new strategy based on power demand forecasting to the management of multi-energy district boilers equipped with hot water tanks”,
Applied Thermal Engineering, Volume 113, 25 February 2017, Pages 1366-1380
[8] Zhongbin Zhang, Ping Song, Yuntian Fan: „Experimental investigation on the geometric structure with perforated baffle for thermal stratification of the water tank”,
Solar Energy, Volume 203, June 2020, Pages 197-209
[9] Luigi Mongibello, Nicola Bianco, Marialaura Di Somma, Giorgio Graditi: „Experimental Validation of a Tool for the Numerical Simulation of a Commercial Hot Water Storage Tank”,
Energy Procedia, Volume 105, May 2017, Pages 4266-4273
[10] Emilia Visek, Livio Mazzrella, Mario Motta: „Performance Analysis of a Solar Cooling System Using Self Tuning Fuzzy-PID Control with TRNSYS”,
Energy Procedia, Volume 57, 2014, Pages 2609-2618
[11] Robert Matysko: „Wybrane zagadnienia modelowania, sterowania i optymalizacji obiegów cieplnych działających w oparciu o układy ORC.”, Zeszyty Naukowe Instytutu Maszyn Przepływowych Polskiej Akademii Nauk w Gdańsku 2013 | nr 557/1516 | 1—162
[12] J..J. Brasz, B.P. Biedermann: “Combined rankine and vapor compression cycles”.
Carrier Corporation US6, 892, 522 B2 -2005.
[13] H. Wang, R. Peterson, K. Harada, E. Miller, R. Ingram-Goble: “Performance of a Combined Organic Rankine Cycle and Vapor”.
School of Mechanical, Industrial, & Manufacturing Engineering (http://ir.library.oregonstate.edu/xmlui/handle/1957/21693).
[14] J. Jeonga, Y,T. Kangb: “Analysis of a refrigeration cycle driven by refrigerant steam turbine”.
International Journal of Refrigeration 27 (2004), 33–41.
[15] J.H. Horlock: “Cogeneration: Combined Heat and Power. Thermodynamics and Economics”.
Pergamon Press, Oxford, 1987.
[16] R. Matysko, J. Mikielewicz: “Transient model of the combined micro-cogeneration and heat pump cycle”.
Procedings of the 1-st International Congress on Thermodynamics Poznań, Poland, 4-7, September 2011.
[17] J. Cieśliński, J., Mikielewicz: „Niekonwencjonalne źródła energii”.
Wydawnictwo Politechniki Gdańskiej, 1996