MENU

E-pismo dla elektryków i elektroników
AUTOMATYKA, ELEKTRYKA, ZAKŁÓCENIA

vol. 9, nr 3 (33) 2018

Publ. 30.09.2018

Diagnostics of Control Systems

Systemy tolerujące uszkodzenia w układach automatyki

dr inż. Mariusz PAWLAK

s. 44-50 DOI: DOI: 10.17274/AEZ.2018.33.03

Abstract

The diagnostic systems used in automation systems have been described, with particular attention on FTC systems (Fault Tolerant Control). The algorithm of operation of the diagnostic system including the subsequent stages of inference has been presented. The procedures used in the detection and location of faults are presented, mainly in systems that tolerate fault to measuring tracks. The algorithms for reconfiguration of control systems after location failure have also been described.

Streszczenie

W artykule omówiono systemy diagnostyczne stosowane w układach automatyki, poświęcając szczególną uwagę systemom tolerującym uszkodzenia typu FTC (Fault Tolerant Control). Przedstawiono algorytm działania systemu diagnostycznego uwzględniający kolejne etapy wnioskowania. Zaprezentowano procedury stosowane podczas detekcji i lokalizacji uszkodzeń, głównie w układach tolerujących uszkodzenia torów pomiarowych. Opisano algorytmy rekonfiguracji układów sterowania po wykryciu awarii.

Keywords

diagnostic, fault tolerant, automation system

Słowa kluczowe

diagnostyka, tolerancja uszkodzeń, systemy automatyki

Rys. / Fig.

Bibliografia / Bilbiography

[1] R. Isermann (2006), “Fault Diagnosis Systems, An Introduction From Fault Detection to Fault Tolerance”, Springer-Verlag, New York.
[2] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki (2016), “Diagnosis and Fault-Tolerant Control”, Springer-Verlag, New York.
[3] R.J. Patton, P.M. Frank, R.N. Clark (red.) (2000), “Issues of Fault Diagnosis for Dynamic Systems”, Springer-Verlag, Berlin.
[4] J. Korbicz, J.M. Kościelny ,Z. Kowalczuk, W. Cholewa (2004), “Fault, Diagnosis, Models, Artificial Intelligence, Applications”, Springer-Verlag, Berlin/Heidelberg.
[5] A.Paoli A, M. Sartini, S. Lafortuneb (2011),”Active Fault Tolerant Control of Discrete Event Systems Using Online Diagnostics. Automatica, 47, 639–649.
[6] M. Schuh, M. Zgorzelski, J. Lunze (2015), “Experimental evaluation of an active fault–tolerant control method”, Control Engineering Practice, 43, 1–11.
[7] M. Pawlak (2016), “Water Level Control System for a Boiler Drum of a Power Boiler Resistant to Measuring Track Damage.” Maintenance Problems, 101,135-144.
[8] Y. Yang, Y.Z. Lu (1991), “Sensor Fault Tolerant Control and its Application”, Symposium on Fault Detection Supervision and Safety for Technical Processes- SAFEPROCESS’91, Baden-Baden, . 1, 55–60.
[9] M.J. Guerrero, T. Peng, W. Gui (2016), “Open-Switch Fault Diagnosis and Fault Tolerant for Matrix Converter With Finite Control Set-Model Predictive Control”, IEEE Transactions on Industrial Electronics, 63(9),5953-5963
[10] S. Khosravani, I.N. Moghaddam, A. Afshar, M. Karrari (2016), “Wide-Area Measurement-Based Fault Tolerant of Power System During Sensor Failure”, Elecrtic Power Systems Reasearch, 137, 66–75.
[11] J. Blesa, D. Rotondo, V. Puig, F. Nejjari (2014) “FDI and FTC of wind turbines using the interval observer approach and virtual actuators/ sensors”, Control Engineering Practice, 24, 138–155.
[12] A.S. Pedersen, J.H. Richter, M. Tabatabaeipour, H. Johannsson (2016), “Fault Tolerant Emergency Control to Preserve Power Systems Stability”, Control Engineering Practice, 53, 151–159.
[13] R. Nazari, M. M. Seron, and J. A. D. Dona (2017), “Actuator fault tolerant control of systems with polytopic uncertainties using set-based diag- nosis and virtual-actuator-based reconfiguration,” Automatica , 75 182–190.
[14] M. Van (2018), “An Enhanced Robust Fault Tolerant Control Based on an Adaptive Fuzzy PID-Nonsingular Fast Terminal Sliding Mode Control for Uncertain Nonlinear Systems “1362 IEEE/ASME Transactions on Mechatronics, . 23 (3),1362-1371