MENU

E-pismo dla elektryków i elektroników
AUTOMATYKA, ELEKTRYKA, ZAKŁÓCENIA

Vol. 8, nr 4 (30) 2017

Publ. 31.12.2017

Five-phase Induction Motor Drive Operation During Stator Phase Fault

Działanie napędu z pięciofazowym silnikiem indukcyjnym przy uszkodzeniu faz stojana

mgr inż. Filip WILCZYŃSKI, mgr inż. Patryk STRANKOWSKI, dr hab. inż. Jarosław GUZIŃSKI, dr hab. inż. Marcin MORAWIEC, dr hab. inż. Arkadiusz LEWICKI, dr inż. Grzegorz KOSTRO

s. 18-26 DOI: DOI: 10.17274/AEZ.2017.30.02.

Abstract

The article presents the most important advantages of multi-phase electric drives. The construction of a five-phase squirrel cage induction motor together with possible stator winding distribution cases is presented, which affect the properties of such motor. Increased reliability of five-phase drives was indicated. The drive operation properties were confirmed by experimental results.

Streszczenie

W artykule przedstawiono najważniejsze zalety wielofazowych napędów elektrycznych. Zaprezentowano budowę pięciofazowego silnika indukcyjnego klatkowego wraz z możliwymi rozwiązaniami uzwojenia stojana, które wpływają na właściwości takiego silnika. Wskazano na zwiększoną niezawodność napędów pięcio-fazowych. Właściwości napędowe potwierdzono wynikami badań eksperymentalnych.

Keywords

five-phase induction motor, electrical drive, speed control, reliability

Słowa kluczowe

silnik indukcyjny pięciofazowy

Rys. / Fig.

Bibliografia / Bilbiography

[1] E.E. Ward, H. Härer, “Preliminary investigation of an invertor-fed 5-phase induction motor.”, IEEE, vol. 116, pp. 980–984, 1969.
[2] H.A. Toliyat, T.A.Lipo, “Analysis of concentrated winding induction machines for adjustable speed drive applications experimental results.”, IEEE Transactions on Energy Conversion, vol. 9, no. 4, December 1994, pp. 695–700.
[3] C.C. Scharlau, L.F.A. Pereira, L.A. Pereira, “Performance of a five-phase induction machine with optimized air gap field under open loop V/f control.”, IEEE, vol. 23, pp. 1046–1056, 2008.
[4] L.A. Pereira, S. Haffner, L.F.A. Pereira, R.A. Benvenuti, R.S. da Rosa, “Parameterized Model and Performance of Five-Phase Inudction Machines including Losses and Saturation.”, J Control Autom Elect Syst, vol. 26, pp. 255–271, 2015.
[5] M. Adamowicz, J. Guziński, Z. Krzemiński, “Nonlinear control of five phase induction motor with synchronized third harmonic flux injection.”, 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), 2015.
[6] K.N. Pavithran, R. Parimelalagan, M.R. Krishnamurthy, “Studies on inverter-fed five-phase induction motor drive.”, IEEE, vol. 3, pp. 224–235, 1988.
[7] J. Guziński, G. Kostro, P. Strankowski, M. Morawiec, A. Iqbal, “Five-Phase Squirrel-Cage Motor. Construction and Drive Properties.”, AUTOMATYKA, POMIARY, ZAKŁÓCENIA, vol. 7, pp. 110–122, 124–136, 2016.
[8] E. Levi, “Multiphase Electric Machines for Variable-Speed Applications.”, IEEE, vol. 55, pp. 1893–1908, 2008.
[9] L. Zheng, J.E. Fletcher, B.W. Williams, X. He, “Dual-Plane Vector Control of a Five-Phase Induction Machine for an Improved Flux Pattern. IEEE, vol. 55, pp. 1996-2005, 2008.
[10] T. McCoy, M. Bentamane, “The all electric warship: An overview of the U.S. Navy’s integrated power system development programme.”, Proc. Int. Conf. ELECSHIP, Istanbul, Turkey, 1998, pp. 1–4.
[11] F. Terrien, S. Siala, P. Noy, “Multiphase induction motor sensorless control for electric ship propulsion.”, in Proc. IEE PEMD Conf., Edinburgh, U.K. pp. 556–561, 2004.
[12] M. Steiner, R. Deplazes, H. Stemmler, “A new transformerless topology for AC-fed traction vehicles using multi-star induction motors.”, EPE J., vol. 10, pp. 45–53, 2000.
[13] S. Mantero, E. De Paola, G. Marina, “An optimised control strategy for double star motors configuration in redundancy operation mode.” in Proc. Eur. Power Electronics Applications Conf. (EPE), Lausanne, Switzerland, 1999, CD-ROM, Paper 013.
[14] M.G. Simoes, P. Vieira, “A high-torque low-speed multiphase brushless machine — A perspective application for electric vehicles.”, IEEE Trans. Ind. Electron., vol. 49, pp. 1154–1164, 2002.
[15] R. Bojoi, A. Tenconi, F. Profumo, F. Farina, “Dual-source fed multiphase induction motor drive for fuel cell vehicles: Topology and control.”, in Proc. IEEE PESC, Recife, Brazil, 2005, pp. 2676–2683.
[16] S.Z. Jiang, K.T. Chau, C. Chan, “Spectral analysis of a new sixphase pole-changing induction motor drive for electric vehicles.”, IEEE Trans. Ind. Electron., vol. 50, pp. 123–131, Feb. 2003.
[17] C.C. Chan, J.Z. Jiang, G.H. Chen, X.Y. Wang, K.T. Chau, “A novel polyphase multipole square-wave permanent magnet motor drive for electric vehicles.”, IEEE Trans. Ind. Appl., vol. 30, pp. 1258–1266, Sep./Oct. 1994.
[18] J.M. Miller, V. Stefanovic, V. Ostovic and J. Kelly, “Design considerations for an automotive integrated starter-generator with pole-phase modulation.”, in Conf. Rec. IEEE IAS Annu. Meeting, Chicago, IL, 2001, pp. 2366–2373.
[19] J.S. Edelson, I.W. Cox, J.S. Magdych, “The Chorus Meshcon solution for starter-generator.”, in Proc. IEEE IEMDC, San Antonio, TX, 2005, pp. 1720–1724.
[20] D. Zdenek, “25 MW high-speed electric drive with thyristor speed control.”, Czechoslov. Heavy Ind., no. 4, pp. 5–9, 1986.
[21] B.C. Mecrow, A.G. Jack, D.J. Atkinson, S.R. Green, G.J. Atkinson, A. King, B. Green, “Design and testing of a four-phase fault-tolerant permanentmagnet machine for an engine fuel pump.”, IEEE Trans. Energy Convers., vol. 19, pp. 671–678, Dec. 2004.
[22] G.J. Atkinson, B.C. Mecrow, A.G. Jack, D.J. Atkinson, P. Sangha and M. Benarous, “The design of fault tolerant machines for aerospace applications.”, in Proc. IEEE IEMDC, San Antonio, TX, 2005, pp. 1863–1869.
[23] J.W. Bennett, B.C. Mecrow, A.G. Jack, D.J. Atkinson, C. Sewell, G. Mason, S. Sheldon, B. Cooper, “Choice of drive topologies for electrical actuation of aircraft flaps and slats.”, in Proc. IEE PEMD, Edinburgh, U.K., 2004, pp. 332–337.
[24] H. Guzman, M.J. Duran, F. Barrero, B. Bogado, S. Toral, “Speed Control of Five-Phase Induction Motors With Integrated Open-Phase Fault Operation Using Model-Based Predictive Current Control Techniques.”, IEEE Transactions, vol. 61, no. 9, pp. 4474–4484, September, 2014.
[25] M. Bermudez, I. Gonzalez-Prieto, F. Barrero, H. Guzman, M.J. Duran, X. Kestelyn, “Open-Phase Fault-Tolerant Direct Torque Control Technique for Five-Phase Induction Motor Drives.”, IEEE Transactions, vol. 64, no. 2, pp. 902–911, September, 2014.
[26] F. Wilczyński, M. Morawiec, P. Strankowski, J. Guziński, A. Lewicki, “Sensorless Field Oriented Control of Five Phase Induction Motor with Third Harmonic Injection.”, (CPE-POWERENG), 2017.
[27] A. Lewicki, P. Strankowski, J. Guziński, „Metoda wektorowej modulacji szerokości impulsów pięciofazowego falownika napięcia.”, Przegląd Elektrotechniczny, nr 5, pp. 28–35, 2016.
[28] Z. Krzeminski, Sensorless control of polyphase induction machines, in J. Kabzinski, “Advanced Control of Electrical Drives and Power Electronics Converters.”, Springer, 2017.
[29] F. Wilczyński, P. Strankowski, J. Guziński, M. Morawiec, A. Lewicki, „Sterowanie wektorowe pięciofazowym silnikiem indukcyjnym z optymalizacją rozkładu strumienia wirnika.”, Wiadomości Elektrotechniczne, nr 11, 2017.
[30] Z. Krzemiński, P. Strankowski, J. Guziński, M. Morawiec, A. Lewicki, G. Kostro, M. Adamowicz, "Bezczujnikowa identyfikacja uszkodzeń w układzie napędowym z pięciofazowym silnikiem indukcyjnym klatkowym.", XVI Sympozjum Energoelektronika w Nauce i Dydaktyce, 11-13 maja 2017, Poznań. pp. 1–7.